

Classical Biological Control for the management of Weeds

Dr Dick Shaw Country Director UK/ Regional Coordinator Invasives North www.cabi.org KNOWLEDGE FOR LIFE

Content

- CABI
- Biocontrol types
 - Inundative
 - Classical
- The age of Serendipity
- Japanese knotweed showing process
- Azolla weevil "baby steps"
- Other current targets
- Conclusion

CABI

- Activities include: scientific publishing, development projects and research, and microbial services
- Established in 1910
- Not-for-profit

in brief

• Owned by **48 member countries**

We work on behalf of 48 member countries

	* *			Ψ			
Anguilla*	Australia	Bahamas	Bangladesh	Barbados	Bermuda*	Botswana	British Virgin Islands*
	X	*	*	*1			<u></u>
Brunei Darussalam	Burundi	Canada	Chile	China	Colombia	Cote d'Ivoire	Cyprus
	*			۲	$\mathbf{\succ}$		٢
Gambia	Ghana	Grenada	Guyana	India	Jamaica	Kenya	DPR Korea
	(*			\star			C
Malawi	Malaysia	Mauritius	Montserrat*	Myanmar	Netherlands [†]	Nigeria	Pakistan
***				***			
Papua New Guinea	Philippines	Rwanda	Sierra Leone	Solomon Islands	South Africa	Sri Lanka	St Helena*
Switzerland	Tanzania	Tripidad & Tobaco	()		Vietnam	Zambia	Zimbabwa
Switzerland	Tanzania	Trinidad & Tobago	Uganda	United Kingdom	Vietnam	Zambia	Zimbabwe

* UK Overseas Territories. **Associate Member

Global reach

We have 400+ staff across 21 locations worldwide

Our Capabilities in Europe vs weeds

- 36 scientists in 3 centres
- 3 quarantine suites
- 8 laboratories
- 10 glasshouse chambers
- Dozens of field cages
- 20 students
- >30 projects

Globally >800 years of experience in IAS – and rising!! Recognised globally as leaders in biological control

Biological options

The Inundative Approach

- Used in high value horticulture, agriculture, golf courses to reduce chemical input/ combat resistance
- Or where conflicts of interest would exclude classical natural control

Better described as **COMMERCIAL** as applied like a chemical product from a bottle with a **label** and a user and is formulated.

Classical Biological Control

Uses co-evolved, and highly specific natural enemies from the area of origin of the plant to provide self-sustaining control. Often after a single release.

7,108 introductions of about 2,685 species of biological control agents have been made.

The Enemy Release Hypothesis

In their introduced range exotic plant species should experience;

"a decrease in regulation by herbivores and other natural enemies, resulting in an increase in distribution and abundance".

Keane, R.M. and Crawley, M.J. (2002) 'Exotic plant invasions and the enemy release hypothesis', *Trends in Ecology & Evolution* **17** (4): pp.164-170.

The Theoretical Process

Time

Graph courtesy of APIS

Eichornia crassipes – Water Hyacinth

Neochetina eichhorniae Mottled water hyacinth weevil Copyright 1997 USDA-ARS

The real sequence of events

Louisiana Waterhyacinth Data

Graph courtesy of APIS

Recent project vs Water Hyacinth in the Guadiana river in Spain

Is it Effective?

Clewley et al (2012) - The effectiveness of classical biological control of invasive plants

- *Meta-analysis of 61 published studies (2000-2011)*
- Biocontrol agents significantly reduced: plant size (28 ± 4%), plant mass (37 ± 4%), flower and seed production (35 ± 13% and 42 ± 9%, respectively) and target plant density (56 ± 7%).
- Non-target plant diversity significantly increased (88 ± 31%)

Culliney (2005) reviewed the economics from 32 projects for which adequate data existed.

- The ratios varied considerably around a mean of over 200: 1 (range = 2.3: 1 to 4,000: 1)
- All were positive

Is It Safe?

Over 1,300 releases of weed biocontrol agents around the world

>400 agents against 150 target weeds

A century of research

Any non-target effects are predictable by the vigorous safety testing

An International code of conduct

12 examples of "non-target" effects – all but one predicted at the time or predictable by the science applied to day

Weed CBC activity in Europe

Country	Recipient	Source
Austria	0	48
Finland	0	5
France	0	111
Germany	0	46
Greece	0	29
Italy	0	71
Portugal	0	18
Spain	0	9
Sweden	0	3
UK	2	41
Total	1	381

CBC Activity in Europe

Insect BCA history

In Europe there have been more than **300** releases of **176** predators and parasitoids against insects with very little regulation / Pest Risk Analyses

The age of serendipity

Opuntia ficus indica invasion of Calderona Natural Park

www.cabi.org

Slide - Vincente Del Torro

Biological control Common ragweed

www.cabi.org/isc.

Ambrosia artemisiifolia

- Worst agricultural, environmental and social weed in EU
 - COST SMARTER -Sustainable management of Ambrosia artemisiifolia in Europe
 - Action will promote and coordinate classical and inundative BC activities among European labs and experts from Non-COST countries

Ambrosia beetle

Recently landed in Italy and spreading rapidly

Not the one we would have chosen first

But it is devastating Ambrosia on the way

Air monitoring data already showing significant reduction in airborne pollen load

Images ex COST SMARTER

Japanese knotveed

A consortium of Sponsors came together in 2003 to sponsor the programme

Llywodraeth Cynulliad Cymru Welsh Assembly Government

The Japanese team in their temperate glasshouse with stock plants

Many insects feeding on most parts

186 species of phytophagous arthropod recorded from Japanese knotweed in Japan.

Gallerucida bifasciata

Allantus luctifer

Machiatella itadori

Lixus impressiventris

Aphalara itadori

Only 2mm as an adult

Eggs can just be seen with the naked eye

Centrifugal phylogenetic method:

More closely related species more likely to be attacked than more distantly related ones

Test Plant List

- 90 species and varieties
- representatives from 19 families.
- 37 plants natives including all native Polygonaceae
- 23 species introduced to the UK,
- 3 species native to Europe,
- 13 ornamental
- 10 economically important UK species

Bar chart showing mean egg count on those plants that did receive eggs in multiple choice oviposition tests. (+/- 1SE).

Nymph transferred % survival over time

Pest Risk Analysis Necessary to free it from PHQL	W&C Act application for release Necessary to release an animal	
Based on Eppo template	Brand new version for Wales & England	.cobi.org
Internal Govt iterative review	Internal Govt iterative review	
	ACRE Committee review	
External Peer review	External Peer review	
Public consultation (3 months)	Public consultation (3 months)	
Chief Scientist advice	Chief Scientist advice	
Ministerial decision for Sec. of State	Ministerial decision for Sec. of State	
Release from PH quarantine licence	W&C license to release	

EU Standing Committee on Plant Health Informed along the way

5 Year monitoring programme (+ contingency plan!

3 recordings /season + 1 winter sample

Latest results

- Field cage results in 2014 prove direct and indirect safety of release
- Still no sustained populations in the field
- Release plan now includes riparian sites which should increase likelihood of success
- New stock from Japan will be compared with old rearing colony
- Canada and USA have petitioned for release

Approval of the PRA

A Pest Risk Analysis of *Puccinia komarovii* ex *Impatiens glandulifera* for the European Union (EU) Complied Using the CAPRA Software Developed by the European and Mediterranean Plant Protection Organization (EPPO)

(EPPO Standard PM 5/3(5))

The research detailed within this document was funded DEFRA, with contributions from the Environment Agency (UK) and the Scottish Government

Funded through the European Union Water Framework Directive

The PRA was written by Rob Tanner and Marion Seier

Supporting documentation was written and compiled by Rob Tanner, Carol Ellison, Sonal Varia, Kate Pollard and Richard Shaw

Draft manuscripts included as appendices detail additional authors

CABI Bakeham Lane

- The PRA was presented to the SCPH on the 26th June in Brussels
- Accepted by FERA and DEFRA
- Defra Ministers approved the release of the rust in July
- Released at first site 26th August

Site	County	Habitat
Sunningdale	Berkshire	Woodland
Silwood park	Berkshire	Woodland
Coldvreath Mill	Cornwall	Riparian

Release 2014

Baby Steps – Azolla weevil

Biological control of Azolla

www.cabi.org/isc.

Azolla filiculoides

- Hugely successful biocontrol in S. Africa, no EU congenerics
 - Weevil Stenopelmus rufinasus already present in mainland Europe-potential to augment existing weevil populations for Azolla biocontrol
- CABI partner in the European RINSE project (Reducing the Impacts of Non-native Species in Europe) - 8 other partners from France, England, Belgium and the Netherlands
- Demonstration trials of S. rufinasus on Azolla could be an important first step for weed biocontrol in mainland Europe.
- Great potential in Southern Europe

RINSE - Reducing the Impact of Non-native Species in Europe

"Investing in your future" Crossborder cooperation programme 2007-2013 Part-financed by the European Union (European Regional Development Fund) European Union, Interreg IV 2 Seas Programme funding

 9 partners from France, England, Belgium and the Netherlands

- Awareness and management of INNS
- CABI conducting demonstration trials with the *Azolla* weevil

Azolla weevil workshop at CABI, Egham UK

Differing requirements by country

UK	Netherlands	Belgium	France	
"Ordinarily resident"	Formal Risk Assessment required	"Naturally occurring"	Proof of residency required	
Department for Environment, Food and Rural Affairs (Defra)	Nederlandse Voedsel- en Warenautoriteit (NVWA) (Netherlands Plant Protection Organisation)	Departement Leefmilieu, Natuur en Energie (LNE) (Department of Environment, Nature and Energy)	Ministère de l'agriculture, de l'agroalimentaire et de la forêt (Ministry of Agriculture, Food and Forestry)	
No restrictions to rearing and redistribution (England & Wales)	Pest Risk Assessment followed by water authority authorised trials with 'native' weevils	Rearing and redistribution of native stock to sites with permission of land managers/ local authorities	Collection and formal ID of weevils in France followed by rearing and regulated releases at limited sites	

EU opportunities

Sheppard, Shaw & Sforza (2006) Weed Research

Gassmann et al. (2006) Hydrobiologia

Species	Form	Origin	EU distribution	Genus native?	Conflict	BC history
Buddleja davidii	Ph	China	Temperate	No ^b	0	Yes
Fallopia japonica	Ge	Japan	Temperate	Yes	No	Yes
Acacia dealbata	Ph	Australia	Mediterranean	No ^b	0	Yes ^d
Azolla filiculoides	Hy	N America	Temp/Med	No ^b	No	Yes ^d
Ailanthus altissima	Ph	China	Temp/Med	No ^b	No	Yes
Impatiens glandulifera	He	India	Temperate	Yes	0	No
Rhododendron ponticum	Ph	S Europe	Temp/Med	Yes	0	Yes
Robinia pseudoacacia	Ph	N America	Temperate	No	F	No
Senecio inaequidens	Не	S Africa	Temp/Med	Yes	No	Yes
Ambrosia artemisiifolia	Th	C America	Temp/Med	Yes	No	Yes ^d
Carpobrotus edulis	Ch	S Africa	Temp/Med	No ^b	No	No
Heracleum mantegazzianum	He	W Asia	Temperate	Yes	No	Yes
Solanum elaeagnifolium	Не	S America	Tem/Med	Yes	No	Yes ^d
Baccharis halimifolia	Ph	N America	Mediterranean	No	No	Yes ^d
Hydrocotyle ranunculoides	Ну	N America	Temp/Med	Yes	No	Yes
Ludwigia peploides	He	S America	Temp/Med	Yes	No	Yes
Crassula helmsii	Ну	Australasia	Temperate	Yes	No	No
Elodea canadensis	Ну	N America	Temperate	No	No	No
Myriophyllum aquaticum	Ну	S America	Temp/Med	Yes	No	Yes
Solidago canadensis	Ge	N America	Temperate	Yes	No	No

Biocontrol of Floating pennywort

Hydrocotyle ranunculoides

- Part of EU WFD project group funded by Defra
- Only 1 native *Hydrocotyle* sp. in Europe
- Listronotus elongatus weevil is most promising agent, no non target development
- Draft PRA should be submitted in 2015
- 2 other potential agents : *Puccinia hydrocotyles* rust and fly, *Hydrellia* sp. ex Argentina
- Opportunities for EU piggy-backing, esp.

Netherlands, France and Belgium, Germany

Crassula helmsii

Crassula helmsii in flower

Australian swamp stonecrop

- Semi aquatic plant, native to Australia and New Zealand – introduced to UK in 1911
 - Forms dense mats, outcompeting native species and altering habitat for native species
 - Difficult to control using conventional methods
 - Project initiated in 2009/2010
- Test plant list produced 41 species including natives, *Crassula aquatica* and *Crassula tillaea*

Advantages of weed CBC

- Based on scientifically sound principles and protocols
- 100+ year history
- Sustainable
- Cost effective
- Environmentally benign
- Efficacious
- Good safety record

Disadvantages of CBC

- Restricted to control of exotics
- Potentially long lag phase
- No eradication
- irreversible
- Perceived as expensive due to long research phase
- Potential conflict of interest
- No guarantee of success and hard to predict impacts

In Summary

- Biological control is a tried and tested approach to some of the worst weeds in the world
- It has a very good safety record and any non-target attack is predictable
- Efficacy is harder to predict
- The political, regulatory and consumer drivers mean that there should be a lot more classical biocontrol in Europe in future
- This tool cannot be ignored when considering species for inclusion in the list of spp of EU Concern re the Invasive Species Regulation

Thank You

www.cabi.org
KNOWLEDGE FOR LIFE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

South West of England

Regional Development Agency

ESPAÑA ESPACIO ATLÁNTICO FRANCE ESPACE ATLANTIQUE IRELAND ATLANTIC AREA PORTUGAL ESPAÇO ATLÂNTICO U.K. ATLANTIC AREA

Many thanks

"Investing in your future" Crossborder cooperation programme 2007-2013 Part-financed by the European Union (European Regional Development Fund)

RINSE

RINSE partners:

Norfolk County Council

Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs, Agriculture and Innovation

nho Research Institute for Nature and Forest

inagro ONDERZOEK & ADVIES IN LAND- & TUINBOUW

University

Hampshire 8 Isle of Wight Wildlife Trust

Collaborators:

STOWA (NL), HHSK (NL), LNE (BE), Eckhart Kuijken & Christine Verscheure (BE), Ministère de l'agriculture, de l'agroalimentaire et de la forêt (FR), UICN (FR), MNHN (FR)

Coordinators:

Melanie Gillings & Mike Sutton-Croft