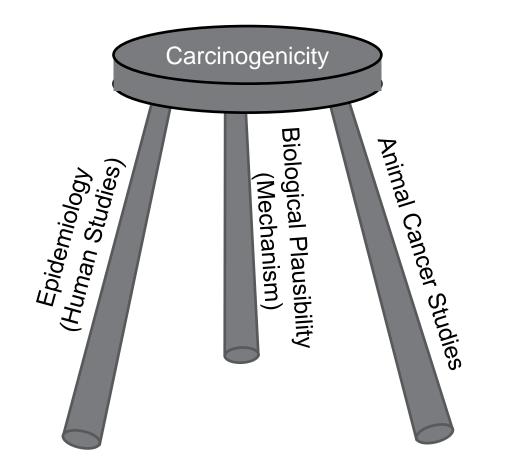
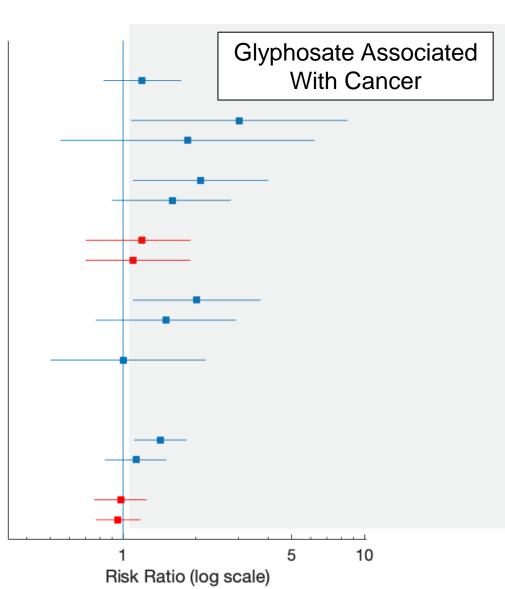

Evaluating the Carcinogenicity of Glyphosate

Christopher J. Portier, Ph.D. Is glyphosate safe for health and the environment? European Parliament, 18 September, 2023

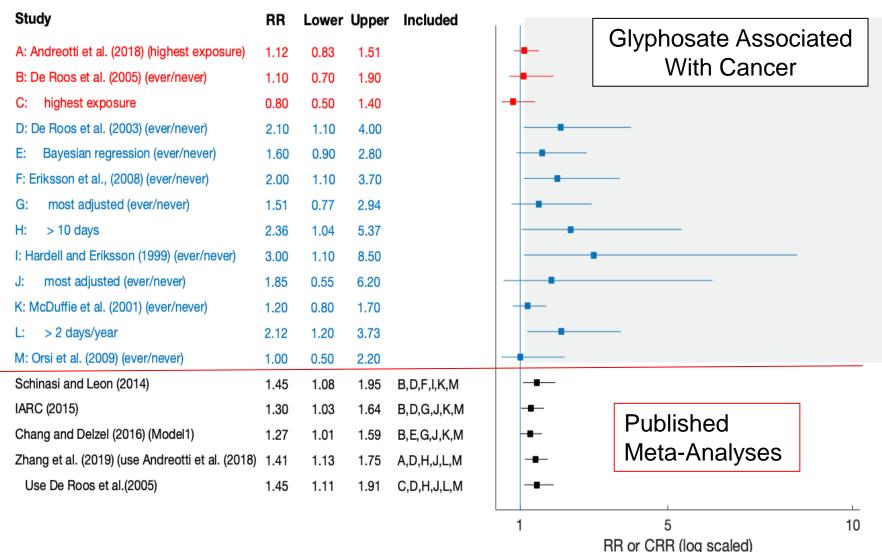

Disclaimer

- I have served as an expert witness in trials relating to glyphosate carcinogenicity on behalf of the plaintiffs
- The opinions expressed in this presentation are mine and have not been altered by others in any way

Policy, Process and Science



Three Key Areas of Review



Plot Summary of Published Epidemiology 5 **Studies (Ever vs Never Exposed)**

RR	Lower	Upper
1.20	0.83	1.74
3.04	1.08	8.52
1.85	0.55	6.20
2.10	1.10	4.00
1.60	0.90	2.80
1.20	0.70	1.90
1.10	0.70	1.90
2.02	1.10	3.71
1.51	0.77	2.94
1.00	0.50	2.20
1.43	1.11	1.83
1.13	0.84	1.51
0.98	0.76	1.25
0.95	0.77	1.18
	1.20 3.04 1.85 2.10 1.60 1.20 1.10 2.02 1.51 1.00 1.43 1.13 0.98	1.20 0.83 3.04 1.08 1.85 0.55 2.10 1.10 1.60 0.90 1.20 0.70 1.10 0.70 1.10 0.70 1.10 0.70 1.10 0.70 1.10 0.70 1.10 0.70 1.10 0.70 1.10 0.50 1.43 1.11 1.13 0.84 0.98 0.76

Plot Summary of Published Meta-Analyses 6 (derived from Zhang et al. (2019), Table 7)

Exposure-Time-Response Summary Plot

Study McDuffie et al. (2001) >0 and <2 days/year >2 days/year De Roos et al. (2005)	RR 1.00 2.12	Lower 0.63 1.20	Upper 1.57 3.73	Glyphosate Associated With Cancer
tertile 2 cumulative exposure tertile 3 cumulative exposure tertile 3 intensity exposure tertile 3 intensity exposure Eriksson et al., (2008) <10 days exposure >10 days exposure 1-10 year latency >10 year latency	0.70 0.90 0.60 0.80 1.69 2.36 1.11 2.26	0.40 0.50 0.30 0.50 0.70 1.04 0.24 1.16	1.40 1.60 1.10 1.40 4.07 5.37 5.08 4.40	
NAPP - Canada 0-3.5 years - unadj >3.5 years - adju >3.5 years - adju >0 and <2 days/year - unadj >2 days/year - unadj >2 days/year - adj >2 days/year - adj >2 days/year - adj >7 days exposure - unadj >7 days exposure - unadj >7 days exposure - adj >7 days exposure - adj 27 days exposure - adj 28 days/20 days 40 intensity Q2 intensity Q4 intensity - enrollment only Q4 intensity - 2005 follow-up Q1 intensity - 5 year lag Q2 intensity - 5 year lag Q3 intensity - 5 year lag Q4 intensity - 20 year lag Q2 intensity - 20 year lag Q3 intensity - 20 year lag Q4 intensity - 20 year lag Q3 intensity - 20 year lag Q4 intensity - 20 year lag	$\begin{array}{c} 1.59\\ 1.20\\ 1.40\\ 1.03\\ 2.42\\ 0.83\\ 1.98\\ 1.20\\ 1.55\\ 1.00\\ 1.19\\ 0.83\\ 0.83\\ 0.87\\ 0.82\\ 0.904\\ 0.92\\ 0.79\\ 1.02\\ 0.79\\ 1.22\\ 1.15\\ 0.987\\ 1.22\\ 1.15\\ 0.987\\ 1.22\\ 1.15\\ 0.987\\ 1.22\\ 1.15\\ 0.987\\ 1.22\\ 1.15\\ 0.988\\ 0.87\\$	$\begin{array}{c} 1.13\\ 0.82\\ 0.97\\ 0.67\\ 1.48\\ 0.51\\ 1.16\\ 0.74\\ 0.99\\ 0.59\\ 0.72\\ 0.59\\ 0.61\\ 0.65\\ 0.64\\ 0.62\\ 0.66\\ 0.59\\ 0.70\\ 0.66\\ 0.59\\ 0.75\\ 0.64\\ 0.91\\ 0.83\\ 0.71\\ 0.83\\$	$\begin{array}{c} 2.22 \\ 1.75 \\ 2.04 \\ 1.54 \\ 1.60 \\ 3.96 \\ 1.34 \\ 1.95 \\ 2.44 \\ 1.68 \\ 1.97 \\ 1.18 \\ 1.12 \\ 1.20 \\ 1.20 \\ 1.20 \\ 1.27 \\ 1.28 \\ 1.06 \\ 1.41 \\ 1.17 \\ 1.64 \\ 1.55 \\ 1.36 \\ 1.51 \end{array}$	
				1 2 3 4 5 6

Exposure Missclassification in Andreotti et al. (2018)

- About 1/3 of the participants in Andreotti et al. (2018) did not respond to the questionnaire and their exposures were "imputed" using a failed statistical model
- The accuracy of their predictions is 55.7%
 - Randomly assigning exposure would give you 50% accuracy
- This misclassification reduces the risk estimate, potentially to below zero
- This study should be given little or no weight in the evaluation

Evaluation: Epidemiology

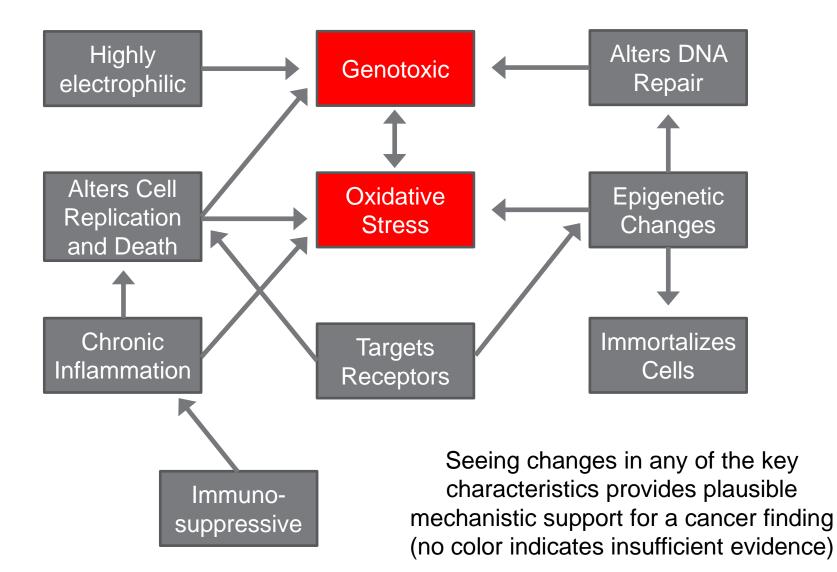
- Positive association exists between glyphosate formulation use and Non-Hodgkins Lymphoma (NHL)
- Causal inference is credible
- Cannot rule out chance, bias, confounding, exposure misclassification
 - Depends on the study
- ECHA CLP Designation for the epidemiology alone would be "Limited Evidence of Carcinogenicity"
 - This should automatically result in at least a classification of 2 in the CLP

Two-Year Carcinogenicity Study

Birth	Dosing for two-years, generally a control group (no chemical) and three different dose groups, generally rats and mice, males and females, 50-75 rodents in each sex/species/dose group	Path comp (which	ology oleted rodents Results umors) reported
6-Weeks (puberty) Rodents randomly placed in different dose groups	R patho	Two years odents sacrificed blogy slides prepa Il tissues and org	ared completed

Animal Cancer Studies

- The analyses of the individual studies
 - Quality
 - Increased cancer risks with increased dose
 - Supporting evidence like changes that precede cancer
- Consistency across studies
 - Pooled or meta-analyses
- Historical evidence
- Mechanistic evidence
- Any other associated scientific literature.


Summary of level of evidence¹ for tumors observed to have a significant trend in 13 rodent carcinogenicity studies in male and female, mice and rats.²

	Males				Females			
Tumor	SD Rat	Wistar Rat	CD-1 Mouse	Swiss Mouse	SD Rat	Wistar Rat	CD-1 Mouse	Swiss albino mouse
Adrenal cortical carcinoma					CE			
Alviolar-Bronchiolar tumor			NE				NE	
Harderian gland tumor							NE	
Hemangioma							CE	CE
Hemangiosarcomas			CE					
Kidney tumor	CE		CE	SE				EE
Liver Adenoma	SE	CE						
Mammary tumor						SE		
Malignant lymphoma			CE	SE			CE	
Pancreas Islet Cell Tumor	SE							
Pituitary tumor		SE				SE		
Skin basal-cell tumor	CE							
Skin keratoacanthoma	CE	CE						
Thyroid C-cell tumor	EE				EE			
Thyroid follicular-cell tumor	EE							
Testis interstitial-cell Tumor	SE							
1 – CE=clear evidence; SE=some evidence; EE=equivocal evidence; NE=no evidence								

Evaluation: Animal Cancer Data

- Positive association exists between glyphosate dose and an increase in carcinogenicity in two or more independent cancer studies in animals
- Causal inference is credible
- ECHA CLP Designation for the animal cancer data alone would be "Sufficient Evidence of Carcinogenicity"
 - This should automatically result in at least a classification of 1B in the CLP

Ten Key Characteristics of Cancer (Smith et al., 2016)

Is glyphosate safe for health and the environment?

- No.
- It can cause cancer in humans.
- It should be in CLP category 1B;

presumed to have carcinogenic potential for humans, classification is largely based on animal evidence

Main Characteristics of Science

- Objective
 - Accept facts as they are
- Verifiable/Testable
 - Based on facts, not faith or dogma
- Ethically Neutral
 - How it will be used does not alter how it is done
 - e.g. Transparency on issues like authors, funding sources, and conflicts of interest
- Systematic
 - Hypothesize, experiment, analyze, conclude, repeat

- Reliable
 - Replicable under prescribed circumstances
- Specific
 - Clear and precise
- Accurate
 - Correctness of statements
- Tentative
 - Subject to change with new facts
- Able to explain and predict