

# Water quality and ecological risks of water pollution and chemical mixtures

Alexandra Kroll Marion Junghans



## Amendment of EQS in Annex I to Dir. 2008/105/EC

### **Extension of mixture toxicity assessment:**

A limit of 0.5  $\mu$ g/L for the sum of all pesticides and relevant metabolites  $\rightarrow$  Based on use of the substances (a.i. in plant protection or biocidal products)

 $\rightarrow$  Other use types not considered

Substances in Annex I can be grouped based on molecular similarity and mode of toxic action, e.g.:

Pyrethroid insecticides Triazine & phenylurea herbicides Neonicotinoid insecticides Estrogens (and BPA) Macrolide antibiotics PFAS (as sum)

Cypermethrin, Bifenthrin, Deltamethrin, Esfenvalerat, Permethrin
Atrazin, Terbutryn, Diuron, Isoproturon
Imidacloprid, Acetamiprid, Clothianidin, Thiachlorprid, Thiametoxam
17 alpha-ethinylestradiol, 17 beta-estradiol, Estrone; (and BPA)
Azithromycin, Clarithromycin, Erithromycin
24 substances







# Amendment of EQS in Annex I to Dir. 2008/105/EC

**Extension of mixture toxicity assessment:** 

A limit of 0.5  $\mu$ g/L for the sum of all pesticides and relevant metabolites  $\rightarrow$  Based on use of the substances (a.i. in plant protection or biocidal products)  $\rightarrow$  Other use types not considered

Substances in Annex I can be grouped based on molecular similarity and mode of toxic action, e.g.:

Pyrethroid insecticides Triazine & phenylurea herbicides Neonicotinoid insecticides

Estrogens (and BPA)

Macrolide antibiotics

PFAS (as sum)

Cypermethrin, Bifenthrin, Deltamethrin, Esfenvalerat, Permethrin Atrazin, Terbutryn, Diuron, Isoproturon

Imidacloprid, Acetamiprid, Clothianidin, Thiachlorprid, Thiametoxam

17 alpha-ethinylestradiol, 17 beta-estradiol, Estrone; (and BPA) Azithromycin, Clarithromycin, Erithromycin

24 substances







### **1.1 PFAS: Challenges and concerns**



panthermedia.net/romrodinka

- Large and complex group of chemicals
- Ubiquitously used
- Ubiquitously spread in environmental compartments
- Stability, «forever chemicals»
- Up-concentration in food chains (biomagnification)
- Effects on human immune system

### **1.2 PFAS: EQS for the sum of 24 substances**

Overview of the quality standards for the Water Framework Directive<sup>1</sup>



### Mixture approach for EQS derivation

- concept of concentration additivity
- «relative potency» using PFOA as reference substance
  - Most data available
- Relative potency factor for other 23 substances based on liver toxicity

### **Critical QS**

- QS for human fish consumption
- QS for drinking water

<sup>1</sup>derivation according to EU Guidance Document No. 27

<sup>2</sup>https://circabc.europa.eu/ui/group/9ab5926d-bed4-4322-9aa7-9964bbe8312d/library/e6137ae7-3056-4d01-ae44-de003185ab1c/details,

### **1.3 PFAS: Fish filet concentrations vs. limit values**



EQS/WFD



- At many sites at least once the EQS to protect birds and otters is exceeded
- Almost all fish samples exceeded the EQS for human consumption at least 10x

Food items EU 2022/2388

![](_page_5_Figure_7.jpeg)

Many samples exceed the regulatory values for PFAS residues in fish for infants and small children (food basket approach)

#### Risks would not be revealed by single-substance based assessment

Data from Valsecchi et al. (2021) Environmental Toxicology and Chemistry 40(3) 658-676

# 2.1 Estrogens: Mixture effects and low effect thresholds

Important sources: agriculture and treated wastewater

### EQS are based on single substances which has two important limitations:

### **Mixture effects**

- The included substances and other compounds with estrogenic activity are agonists of the estrogen receptor (ER) and act in a mixture (concentration addition)
- Strong evidence that the monitoring of E1, E2 and EE2 alone is insufficient to assess the overall risk of estrogenic endocrine disruption in water (Annex III.1, EBM report)

Suggestion: group-based approach, see next example on neonicotinoids

Low effect thresholds (pg/L range) A number of Member States (MS) are not able to quantify at EQS levels due to insufficient LOQ

Suggestion: implementation of effectbased quantification (EBM) complementing chemical analytics to better appreciate risks

# 2.2 Estrogens: Partial mitigation by upgrade of WWTP

![](_page_7_Figure_1.jpeg)

Progesterone-like activity

PC = primary clarifier, SC = secondary clarifier, OZ = ozonation

Kienle et al. (2022), Water Research 212, 118084, https://doi.org/10.1016/j.watres.2022.118084

### 3.1 Pesticide mixtures EQS: one size does not fit all

![](_page_8_Picture_1.jpeg)

![](_page_8_Figure_2.jpeg)

Example sample from monitoring in German small streams:

Adding the risk quotients for the 4 neonicotinoid insecticides<sup>1</sup> leads to double the exceedance than the sum of 0.5  $\mu$ g/L

 $\rightarrow$  Using 0.5 µg/L as a mixture EQS for pesticides renders the mixture risks of the neonicotinoids negligible

 $\rightarrow$  It is very much appreciated that the proposal intends to account for the mixture toxicity of pesticides

 $\rightarrow$  BUT, the general sum EQS of 0.5 µg/L does not account for the actual risk of the pesticides

risk mitigation measures will be ill informed

→ implement mixture risk limits for substance groups with same mode of action

<sup>1</sup> acetamiprid (no. 48), imidacloprid (no. 62), thiacloprid (no. 67) and thiametoxam (no. 68)

## 3.2 Proposal for a better (pesticide) mixture risk limit

![](_page_9_Picture_1.jpeg)

#### **Concentration Addition**

![](_page_9_Picture_3.jpeg)

#### same concept as in

- Relative Potency
- PFOA (and dioxin) equivalent concentrations footnotes 28 (and 24)
- 2) Effect-based-trigger values (see estrogen monitoring)

# Add mixture risk limit for substances with same mode of action

#### **Pesticides**:

- Neonicotinoids (numbers 48, 62, 67, 68)
- Pyrethroid insecticides (41, 50, 55, 58, 64)
- Triazine and phenylurea herbicides (3, 13, 19, 40, 45)

#### And other groups:

- Estrogenic hormones (no. 46, 47, 49)
- Macrolide antibiotics (no. 49, 53, 57)

By means of a footnote indicating that summed risk quotients may not exceed value of 1:

 (<sup>29</sup>) For the group of neonicotinoids (no. 48, 62, 67, 68), the summed risk quotients defined as the ratio between the measured environmental concentration and the individual EQS may not exceed a value of 1; the same applies for the group of....

![](_page_10_Picture_0.jpeg)

### 3.3 A decision tree is already available

Adopted by SCHER, SCENHIR, SCCS in 2012; Opinion on Toxicity and Assessment of Chemical Mixtures

![](_page_10_Figure_3.jpeg)

# Regular updates and considering mixture toxicity are essential

![](_page_11_Picture_1.jpeg)

- It is essential that the list of new substances in the EQSD Annex is adopted to better meet the protection goals of the WFD
- Stringent consideration of mixture risks still needs to be implemented in the future
  - Based on mode of action and toxic effects
  - Consider decision tree (SCHER, SCENHIR, SCCS 2012) as basis
- Different sources of micropolutants need to be covered
- EQS to be updated more regularly to incorporate new scientific knowledge

oekotoxzentrum centre ecotox

# Thanks a lot !