Pesticide reduction - what are the alternatives?

Franz Bigler
President IOBC-WPRS

IOBC
www.iobc-wprs.org
The IPM strategy

Integrated Pest Management

Responsive (direct) crop protection

Risk assessment/ Monitoring

Preventive (indirect) crop protection

Tolerant/ Resistant cultivars

Enhancement of Natural enemies

Cultural control: Cultivation techniques
Fertilizer, Irrigation
Crop rotation

Threshold values

Warning/Forecasting/ Early diagnosis systems

Biological

Physical

Biotechnical

Chemical
Preventive control methods in IPM

<table>
<thead>
<tr>
<th>Method/Measure</th>
<th>Insects</th>
<th>Nematods</th>
<th>Diseases</th>
<th>Weeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certified seeds & plants</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Field hygiene (e.g., residue man.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Choice of varieties, cultivars</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Crop rotation, crop sequence</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fertilization (e.g., N)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Timing of field management (e.g., sowing, harrowing)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pruning (e.g., trees, grapevine)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cover crops, tillage</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Enhancement of nat. enemies</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Preventive measure has impact (+), has no impact (-)

Example given in this presentation
Direct non-chemical control methods in IPM

<table>
<thead>
<tr>
<th>Method/Measure</th>
<th>Insects</th>
<th>Nematods</th>
<th>Diseases</th>
<th>Weeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological control</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pheromones: Mating disruption</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pheromones: Mass trap., A & K</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sterile Insect Technique (SIT)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exclusion netting</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Physical control (e.g. mechan., thermal)</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Preventive measure has impact (+), has no impact (-)

Examples given in this presentation
Case studies of successful IPM measures

1. Field hygiene, crop sequence, resistant cultivars, tillage: Fusarium diseases
2. Crop rotation: Corn root worm
3. Biological control: European corn borer
4. Biological control: Pests and diseases in glasshouse
5. Sexual pheromones for insect control: rice borer
6. Sterile Insect Technique (SIT): Medfly in citrus
Effect of preventive methods on *Fusarium* incidence on wheat

Factors having impact on *Fusarium* incidence:
- Variety
- Crop rotation, crop sequence
- Tillage & residue management

F. graminearum *F. avenaceum*

Vogelgsang et al. 2011
Fusarium graminearum life cycle

A. Schilder & G. Bergstrom

Vogelgsang et al. 2011
Effect of variety and crop sequence on *F. graminearum*

Vogelgsang et al. 2011
Crop rotation to prevent damage by the Western Corn Rootworm

Barriers Farmer’s economy, farm structure,

Incentives Ban of insecticides, decrees, environment (e.g. water prot. zones)
Biological control of the European corn borer with *Trichogramma*

Facts
- *Trichogramma* is used on 150‘000 ha of maize
- Efficacy is comparable to insecticides

Barriers
- Costs are higher than insecticides
- Application on large farms is laborious
- Farmers have to learn a new system

Incentives
- Technical difficulties with insecticide applicat.
- No secondary pest outbreaks
- Appropriate for small/medium sized farms
- Subsidized in some countries/regions
IPM in protected crops - a multi-pest approach

Facts
- Intensive production of high value crops requires high protection level
- Uniform environment offers optimal conditions for pests
- Large areas of glasshouses concentrated in same location

Courtesy J.C. van Lenteren, Wageningen Univ., NL
From pesticides to IPM and biocontrol

- No pest resistance to pesticides
- Worker safety and pesticide use
- Less phytotox and higher yield
- Use of pollinators
- No waiting period for harvest, no residues

Incentives
- New systems to learn

Barriers

Courtesy J.C. van Lenteren, Wageningen Univ., NL
Worldwide use of pheromones for mating disruption in 2011

Use of Mating Disruption - 2011

Total 770’000 ha

Examples of MD in Europe
- Pome & stone fruit 110'000 ha
- Vineyard 133'000 ha

Barriers
- Local conditions
- Organisation of actions
- Pest species
- Pheromone efficacy
- Delivery systems

Incentives
- Resistance problems
- Market access
- Environment

Oriental fruit moth CP:204’000 ha
Grape moth CM:58’000 ha
Pink bollworm LB:152’000 ha
Gypsy moth PG:78’000 ha
LD:154’000 ha
European vineyards with mating disruption in 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>Total vineyard surface (hectares)</th>
<th>Vineyard treated with MD (hectares)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>102,000</td>
<td>70,000</td>
<td>68.6</td>
</tr>
<tr>
<td>France</td>
<td>867,000</td>
<td>20,000</td>
<td>2.3</td>
</tr>
<tr>
<td>Italy</td>
<td>847,000</td>
<td>16,500</td>
<td>1.9</td>
</tr>
<tr>
<td>Spain</td>
<td>1,169,000</td>
<td>14,500</td>
<td>1.2</td>
</tr>
<tr>
<td>Switzerland</td>
<td>14,800</td>
<td>7,000</td>
<td>47.3</td>
</tr>
<tr>
<td>Austria</td>
<td>49,900</td>
<td>2,400</td>
<td>4.8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>17,700</td>
<td>1,300</td>
<td>7.3</td>
</tr>
<tr>
<td>Portugal</td>
<td>248,000</td>
<td>1,200</td>
<td>0.5</td>
</tr>
<tr>
<td>Hungary</td>
<td>75,000</td>
<td>300</td>
<td>0.4</td>
</tr>
<tr>
<td>Slovakia</td>
<td>17,600</td>
<td>100</td>
<td>0.6</td>
</tr>
<tr>
<td>Cyprus</td>
<td>15,300</td>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>3,423,300</td>
<td>133,400</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Thomson and Jankins, 2012
Mass trapping of the Rice stem borer in the Ebro Delta, Spain

Barriers
- New technology

Incentives
- Environment (nat. res.)
- Fish production
- Tourism
- High income from rice
Sterile Insect Technique & CS against the Medfly in fruit crops

Facts
- Key pest in Med. Regions on many fruit crops
- Heavy insecticide use
- SIT technology used on 152'000 ha of fruit crops in 2010
- Traps with chemosterilant bait

Barriers
- New system, efficacy unknown, costs

Incentives
- Export to USA & CND (strict quarantine regulations, market)
- Areal application prohibited
- Good control of Medfly (SIT & chemosterilants)
Lessons learned from case studies

• IPM is a valid and solid concept for pesticide reduction in all crop types. IPM is resource efficient and economic.

• Major incentives for farmers to apply IPM are economic benefits e.g. market access, problems with pesticides (resistance, environment, residues, health), techn. difficulties, government decrees.

• Lots of alternatives are available and waiting to be adopted by farmers (slow technology transfer!)

• Added value to health and environment by IPM must pay off for farmers.
Thank you for your attention and join IOBC now!

www.iobc-wprs.org