Pesticide use in European agriculture The case of apple production

Marco Contiero

Greenpeace European Unit

The Bitter Taste of Europe's Apple Production

and how Ecological Solutions can Bloom

Soil and Water testing

85 samples in 12 countries: **53** different pesticides

78% soil 72% water samples: residues at least one pesticide

56% samples: two or more residues (5 samples ≥ 10)

- Italy (18 pesticides 3 samples);
- Belgium (15 pesticides 3 samples);
- France (13 pesticides 6 samples)

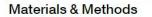
Cocktails of pesticides detected all over Europe

The Bitter Taste of Europe's Apple Production

and how Ecological Solutions can Bloom

Soil and Water testing

70% of pesticides found: very high overall toxicity to human and wildlife


8 pesticides in water highly toxic to aquatic organisms

5 water samples exceed Environmental Quality Standards High Priority Contaminants WFD

20 pesticides very persistent8 pesticides highly toxic to bees

Snapshot at the start of blossoming

Country	No. of soil samples	Area						
Austria	3	2 x Puch bel Web, 1 x listel						
Belgium	3	S x Heapengouw						
France	6	2 x Limousin, 2 x Provence-Apes-Otte d'Azur, 2 x Misi-Pyrénées						
Cermeny	- 5	5 x After Land						
Creece	3	1 x Korintrie, 1 x imetrie, 1 x Arkectie						
Hungary	6	6 x Khikumakg						
taly	3	2 x Weldi Non, 1 x Veteline						
Netherlande	5	1 x Webbre, 1 x Wearberburg, 1 x Middelweert, 1 x Luttegeest, 1 x Matoreose						
Polend	3	 X Wierzchucke, Kujewsko-pomoratie volvodenię, 1 x Świnkiden Dworat, Łódzie volvodanię, 1 x Wólie Łęczeszycke, Mazowiecke volvodatię 						
Sovete	3	2 x Nitriansky kraj, 1 x Trnavský kraj						
Spein	2	2 sCatalufia						
Switzerland	7	7 to Lake of Bodensee region (Katon Thurgau)						
Total soil sample from	49							

100	ol/fioris o	en Ellocero		

Country	No. of water samples	Type of water body	Area
Austrie	1	Puzzle	1 x time
Austrie	1	stream between orchard fields	1 x Puch bel Welz
Austria	1	pipe draining orchard field	1 x tizse
Belgium	1	stream draining apple ordrand	1 x Hispengoue
France	2	late water	2 x Limousin
France	3	surface water	2 x Province-Apes-Côte d'Azuz, 1 x Midi-Pyré- nées
Germany	5	crossed allah	5 x Atles Land
Greece	. 1	atream running through orchard	1 x Korinthia
Greece	1	Puzzle	1 x imatria
Tody	2	Carnil	1 x Weldi Non, 1 x Velteline
Netherlands	3	altah within orahera field	1 x Veiddiel, 1 x Middelweert, 1 x Luffeigeest
Netherlands	2	clich between orchard fields	1 x Merkresse, 1 s Waardenburg
Polend	3	Witter	X Wierzchucios, Kujewsko-pomorskie volvode- snip, 1 x Świnioślez Deorski, Łódzkie volvodenię 1 x Wilkie Łeczeszycke, Mazowiedkie volvodetip
Slovekie	3	puzzle ester	2 x Nitriansky kraj, 5 x Trmaský kraj
Spain	1	puddle water	1 x Cessiufie
Switzerland	1	surface runoff water	1 x Lake of Bodenise region (Katon Thurgau)
Seitzerland	5	drainage pipe runoff water	5 x Lake of Bodensee region (Katon Thurgau)
Total no. of water samples from apple prohards	×		

The Bitter Taste of Europe's Apple Production

Apple testing

126 apple samples 11 EU countries23 supermarket chains109 conventionally grown apples

- All organic apples free of residues
- 17% conventional free of residues
- 39 pesticides residues detected
- 60% containing 2 or more pesticides
- Below MRLs

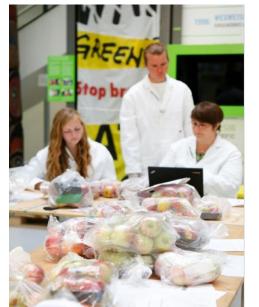
20 fungicides 16 insecticides

- THPI (76)
- Captan (20)
- Boscalid (19)
- Pirimicarb (18)
- Chlorpyrifos-ethyl (15)

Apple testing

Toxic Load Indicator database (TLI)

Highest TLI ranking (10):


- 14 toxicity to aquatic organisms
- 15 toxicity to beneficial insects
- 8 toxicity to bees
- 13 persistence
- 7 bioaccumulation

Once released into the environment, break down slowly and can be taken up and accumulated by organisms throughout the food web

Pesticide

routine in EU

Methods and Materials

A size of 1 for the fire feet in appear feet or common from 1 for Size of the common and a size of the feet of the

Austria 10 samples; Belgium 4 samples; Bulgarfa 5 samples; Switzerland 8 samples; Germa 39 samples; France 13 samples; Italy 10 samples; Netherlands 5 samples; Poland 10 sample Slovalida 8 samples; Spain 14 samples

naysia of appear was carried out at an independent succratory in Germany, using a motified uECINERS (DIN EN 15662) analytical protocol. Predicides were analysed using a muttresidu C-MSIMS and I,C-MSIMS method covering 500 different aubstances, with a detection limit ODI) of Sugring and a limit of quantification (I,OQI) of 10µg/kg for most compounds.

In summary, 10mil of auchterfiels (HPLC Gradert Grade), WMP) was added to 10g of sample, together with an internal standard solution (containing injecturion-off or IC D-MBMS analysis, and arthream-of 10 for OC-MS/MS analysis, After addition of 4g of anhyticus magnesium subhates, 1g of adocum chrorists, 1g of trisodum chiese didystats, and OSg of disodium hydrogen chrate seequilinydrate, the whole mixture was shaken and was then separated using entireared analysis.

7ml of the supermatant was transferred to a tube containing 1g of anhydrous magnesium sulphate and was then briefly shaken by hand and centrifuged again. An aliquot of the supermatant was removed and, after addition of 10µl of 5% formic acid solution per ml of extract as an analyte presentative, was analysed by LC-MSMS.

S00mg of PSA clearup sorbent were added to the remaining solution, and the mixture was then shaken and centrifuged in a refrigerated centrifuge. Two aliquots of the supernaturt we then transferred to two visits, and, after addition of 10µl 5% formic acid solution per mi of extract, were used for GC-MSMS analyses.

STICIDE APPLICATION AS POUTINE IN EU APPLE PRODUCTION

Table 2: Ranges of concentrations of posticides detected in apple samples and their current approval status within the EU Peeticide name Number of Prequency Concentration range Approved for Predicte by:

	detections	of detection in %	in mg/kg where found (min – max)	use in the EU		
Apetemprid	2	1.0	0.022-0.056	Y	1	
Doeceld	19	17.4	0.012-0.163	Y	F	
Dupirimete	1	0.9	0.011	Υ	F	
Captan	20	10.4	0.01-0.106	Υ	F	
Chlorantranliprole	7	5.4	0.012-0.042	Y	1	
Chlorpyrlfox(-ethyl)	15	13.0	0.015-0.209	Y	1	
Chlorpyrlios(-methyl)	3	2.0	0.016-0.179	Y	tA.	
Chlorothalonii	1	0.9	0.013	Y	F	
Cytwiothrin, lambda-	1	0.9	0.019	Y		
Cypermethrin	1	0.9	0.023	Y	1	
Cyprodnil	5	4.5	0.011-0.06	Υ	F	
Diffenoconazole	1	0.9	0.065	Y	F	
Offubenzuron	1	0.9	0.00	Υ	1	
Diphenylamine	1	0.9	0.017	N	GR; F; I	
Dithlenon	4	3.6	0.013-0.057	Y	F	
Ethirimol	1	0.9	0.036	N (but metaboli- te of Bupirimate)	F	
Fenorycerb	1	0.9	0.001	Y	1	
Ferpyroximate	1	0.9	0.01	Y	A	
Floricamid	7	6.4	0.01-0.059	Y	1	
Fludovonii	0					
		7.0	0.017-0.111	Y	F	
Fluopyram	3	2.0	0.017-0.111	Y	r	
Fluopynem Folpet					-	
	0	2.0	0.012-0.078	Y	F	
Folpet	2	2.0 1.0	0.012-0.078	Y	r	
Foljet Imazeli	2	2.0 1.0 0.9	0.012-0.078 0.760-0.938 0.777	Y Y Y	F F	
Foljet Imeali Imidadoprid	2 1 1	2.0 1.0 0.9	0.012-0.078 0.760-0.900 0.777 0.045	Y Y Y	F F	
Foipet Imazell Imidescoptd Indoxecarb	2 1 1	2.0 1.0 0.9 0.9	0.012-0.070 0.766-0.930 0.777 0.045 0.012-0.023	Y Y Y Y	F F I	
Foljet Imerali Imidesloprid Indosearb Iprodone	1 1 2 1	2.0 1.0 0.9 0.9 1.0	0.012-0.076 0.760-0.900 0.777 0.045 0.012-0.023	Y Y Y Y Y	F F 1 1 F	
Fojet Imerali Imideoloprid Indovacarb Iprodone Methosyfenozide	3 2 1 1 1 2 1	2.0 1.0 0.9 0.9 1.0 0.9	0.012-0.070 0.760-0.900 0.777 0.045 0.012-0.023 0.023 0.013-0.064	Y Y Y Y Y Y Y Y Y Y	F F 1 1 F F 1	
Foipet Imerali Imideoloprid Indoxacarb Iprodone Methoxyfenozide Myclobutanii	2 1 1 1 2 1 10	2.0 1.0 0.9 0.9 1.0 0.9 9.2	0.012-0.078 0.760-0.908 0.777 0.045 0.012-0.023 0.022 0.013-0.064 0.01	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F 1 F 1 F F 1 F F F F F F F F F F F F	
Foljet Imenall Imidacioprid Indoxacarb Iprodone Methosylenoride Mydobutanii Phosmat	2 1 1 1 2 1 10 1	2.8 1.8 0.9 0.9 1.8 0.9 9.2 0.9	0.012-0.076 0.766-0.900 0.777 0.045 0.012-0.023 0.023 0.013-0.064 0.01	Y Y Y Y Y Y Y Y Y Y Y Y	F F 1 1 F 1 F E A	

RESTICIOE APPLICAT	ON AS POUTINE	IN EU APPLE PRO	OUCTION 9

Spirodolofen	6	5.5	0.013-0.036	Y	A
Tebuconazole	6	5.5	0.01-0.074	Y	F
Tebufenodde 3		2.0	0.015-0.045	Y	1
Thiadoprid 2		1.0	0.011-0.016	Y	1
Thiophanate-methyl	1	0.9	0.014	Y	F
THPI (Vietabolite of Captan/Captafol)	76	69.7	0.01-0.369	Y	
Trifloxyetrobin	11	10:1	0.01-0.044	Y	F

Table 2 ranges of concentrations of peerclose ceasing in ages sengials and that current approximates status when the Lacording to the Peerclose Propriete Desbalaw, along of the deseaded peetclose may not be approved at the lie of Individual countries despite being approved for use of I'll level (see http://tetem.herb.ac.uk/senu/ppdb/en/). Day:

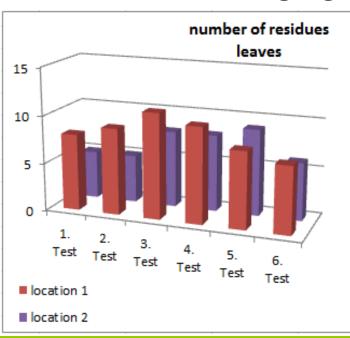
is 3. Osomicae of the mitali excurses of numbered areas some

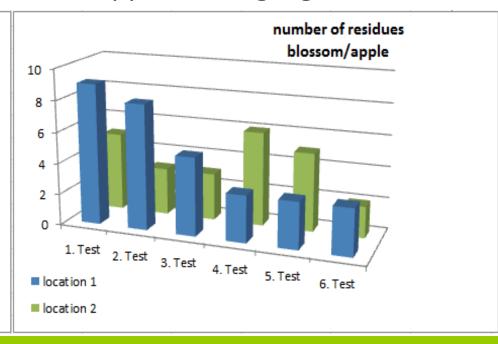
Country	No. of eampies conventional / organic	Retaliers
Suetria.	9/1	4x Ald/Hoter, 4x Rewe, 2x Spar
Niglum	3/1	fix Bioplanet, fix Camefour, fix Colouyt, fix Dehalze
Tulgaria	9/2	Ox Bille, 1x Gimel, 1x Ltdl
nance	12/1	2x Auchan, 3x Carrefour, 2x Caeino, 2x Intermerché, 2x Laciero, 2x Superityper U
Serrany	30/6	Sx Aldi, 1x Alnatura, Didissio, Rididelia, Didiletro, Dididi, Billiewe
tely	9/1	Dx Auchen, Dx Lidi, Dx Cerrefour, 1x Natural
ietherlande	5/0	1x Albert Heljn, 2x Aldi, 2x Lidi
Poland	10/0	Sx Auchen, 2x Intermerché, 3x Ledero
Soveide	8/0	Ox Reverbille, 2x Cerrefour, 1x Gazdovelry, 2x Ltd
lpah	1170	Dx Auchen, Dx Cerrefour, Dx Lidi, Dx Leclero, Dx Mercedone, Dx

19 PESTIGDE APPLICATION AS ROUTINE IN EU APPLE PRODUCTS

apple production

Pesticide


application as


October 2015 Greenpeace Research Laboratories Technical Report 06-2015

routine in EU

German testing

- Orchards Atles Land 6 visits May-Sept.
- 4 samples each visit 2 on leaves 2 on apples
- 17 different pesticides found 11 in one leave sample
- Captan at 193 mg/kg leaves MRL on apples 3 mg/kg
- Flonicamide 4.9mg/kg leaves MRL on apples 0.2mg/kg

European and national data

Germany - Treatment Frequency Index

(number of full dose pesticide applications per crop)

- Since 2001 the index increased in arable and fruit crops (apples and grapes)
- In 2014 TFI reached value 34 in apple orchards = 34 full doses of pesticides on apples in one growing season.

			Übersicl	ht zu Bel	n <mark>andl</mark> u	ngsindize	S				
alle Maßnahmen - BI (gesamt)											
	Winterweizen	Wintergerste	Winterraps	Kartoffeln	Mais	Zuckerrüben	Hopfen	Apfel	Wein		
2011	4,9	3,8	6,2	10,8	1,9	3,7	11,0	32,2	15,3		
2012	5,2	4,1	6,5	12,2	1,9	4,2	9,3	32,6	16,6		
2013	5,2	4,1	6,6	11,2	1,8	3,8	8,0	31.9	17,2		
2014	5,7	3,9	6,7	12,6	2,0		11,1	33,7	19,8		
2015											

NL - Pesticide use in agriculture: crops and applications

Gebruik gewasbeschermingsmiddelen in de landbouw; gewas en toepassing

03 juli 2015 | meer info

		Onderwerpen 🗹	Oppervlakte met gebruik	Gebruik per jaar	Gebruik per hectare
Toepassingsgroepen	Teeltsectoren en gewassen	Perioden 🔼 🔄	ha	kg	kg/ha
Totaal gewasbeschermingsmiddelen	Aardbeien open grond (productie)	2000	1 746	15 687	9,0
		2004	2 012	21 427	10,1
		2008	1 200	7 278	5,8
		2012	1 299	15 476	10.
	Appels	2000	12 839	231 976	18,1
		2004	10 217	264 363	25,9
		2008	9 213	261 114	28,:
		2012	7 748	240 250	30,
	Peren	2000	6 019	104 177	17,
		2004	6 493	225 292	34,
		2008	7 476	209 511	28,
		2012	7 731	183 763	22,
	Tomaten	2000	1 133	30 014	26,
		2004	1 352	19 587	14,
		2008	1 553	25 167	15,
		2012	1 642	22 144	13,:
	Rozen	2000	932	57 194	61,4
		2004	848	57 306	67,0
		2008	578	51 149	87,
		2012	406	43 254	106,2

© Centraal Bureau voor de Statistiek, Den Haag/Heerlen 28-10-2015

Evolution of NODU and QSA indicators =
«Strong tendency to increase pesticides use»

Evolution du NODU usage agricole

Average pesticides use went up 5 % between 2008 – 2013

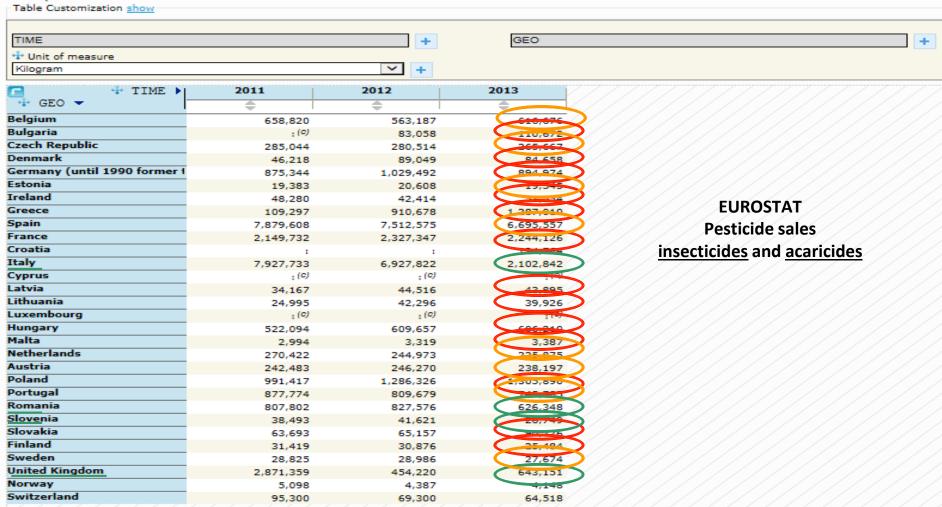
Increase in pesticides use by 9,2% in 2013 compared to 2012

Apples

2011 growing season, 98 % of growers said they treated their trees.

«Apples are the fruit that receives most phytosanitary treatments: **35,1 on average**»

«Insecticides and acaricides are used on average close to three treatments for apricots and cherries and **up to nine treatments for apples**»


ISPRA 2014 National Report on Pesticides in Water

- 27.995 samples = 175 pesticides found (> previous years)
- 56,9% surface water contaminated
- 31% groundwater contaminated
- 253 samples (17,2%) surface water exceed Envi Quality Standards
- 152 samples (6,3%) groundwater exceed Envi Quality Standards
- 18% surface water at least 2 pesticides, up to 31, average 3
- 13% groundwater at least 2 pesticides, up to 36, average 3.5
- "The overall results indicate a wide spread of contamination"
- Monitoring gaps: "200 substances currently in use are not included into monitoring programmes, 44 of them are classified as dangerous, in particular 38 are dangerous for acquatic organisms"

Pesticide sales

Last update: 16-07-2015

Eurostat – All pesticides sales 1997-2008

ronnes or acuve ingreuent												
geo tim	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
EU (28 countries)	:	:	:	:	:	:	:	:	:	:	:	:
EU (27 countries)	:	:	:	:	:	:	:	:	:	:	:	:
Euro area (18 countries)	:	:	:	:	:	:	:	:	:	:	:	:
Euro area (17 countries)	:	:	:	:	:	:	:	:	:	:	:	:
Belgium_	9,276	9,861	9,521	9,953	8,845	9,204	8,822	9,185	9,776) :	:	:
Bulgaria	:	:	:	:	:	:	:	:	•	:	;	:
Czech Republic	:	:	:	:	:	:	:	:	:	:	:	:
Denmark	3,757	3,673	2,929	2,889	3,127	2,912	2,991	2,941	3,299	3,254	-354	4.051
Germany	30,721	33,644	30,231	30,331	27,885	29,531	30,164	28,753	29,512	31,819	~< 600	34,664
Estonia	197	191	184	306	329	329	322	357	393		459	
Ireland	2,356	2,534	2,102	2,133	2.486	2,796	2,913	3,104	2,776	2,874		:
Greece	9,034	11,479	10,153	11,171	11,111	:	:	:	:		:	:
Spain	34,023	35,070	33,614	34,577	35,700	>	:	:	:	: _		:
France	109,792	107,753	120,501	94,694	00,635	82,448	74,524	76,099	78,265	71,6 2	77,255):
Croatia	:	:	:	:	:	:	:	:	:		·	:
Italy	84,796	84,526	82,048	79,831	76,346	94,711	86,705	84,292	85, 73	81,450	:	:
Cyprus	:	:	:	:	:	:	:	:	:	•		:
Latvia	:	:	:	284	369	339	418	597	733	2,23	1,052	
Lithuania	:	: _	:	:	:	:	:	:	:	:		:
Luxembourg	332	430	421):	:	:	:	:	:	:		
Hungary	5,314	6,230	0,150	5,473	6,431	8,232	8,726	9,941	9,676	11,523	11,178	12,084
Malta	:	:	:	184	217	222	243		:	: _		
Netherlands	10,399	10,721	10,196	9,655	7,987	8,073	7,000	9,071	0.300	9,41	10,740	
Austria	3,690	3,341	3,419	3,563	3,133	3,080	3,386	3,302	3,404			
Poland	9,501	8,699	8,469	8,848	8,855	10,358	7,184	8,726	16.039	77, 102	15.302	
Portugal	12,750	14,365	15,396	15,469	15,491	17,435	17,046	16,938	16,346	15,703	10,009	17,060
Romania	:	:	:	:	:	:	:	:				
Slovenia	:	:	:	1,469	1,399	1,164	1,361	1,560	1,384	1,281		:
Slovakia	:	:	:	:	:	:	:	:			:	:
Finland	999	1,164	1,141	1,146	1,424	1,620	1,667	1,489	1,43	1.645	$\boldsymbol{\prec}$:	:
Sweden	1,608	1,629	1,698	1,652	1,738	1,711	2,049	942	1,5.	1,707	X :	:
United Kingdom	24,489	25,382	25,299	23,601	23,526	23,526	22,564	23,463	23,631	21,151):	:
Iceland	:	:	:	:	:	:	:	:	:	:	:	:
Liechtenstein	:	:	:	:	:	:	:	:	:	:	:	:
Norway	754	954	796	378	518	818	658	824	511	690	720	:
Switzerland	:	:	:	:	:	:	:	1	1	:	:	1
Montenegro	:	:	:	:	:	:	:	:	:	:	:	1
Former Yugoslav Republic of Macedonia, the	:	:	:	:	:	:	:	:	:	:	:	:
Albania	:	:	:	:	:	:	:	:	:	:	:	:
Serbia	:	:	:	:	:	:	:	:	:	:	:	:
Turkey	:	:	:	:	:	:	:	:	:	:	:	:

EFSA 2015 report Pesticide residues in food

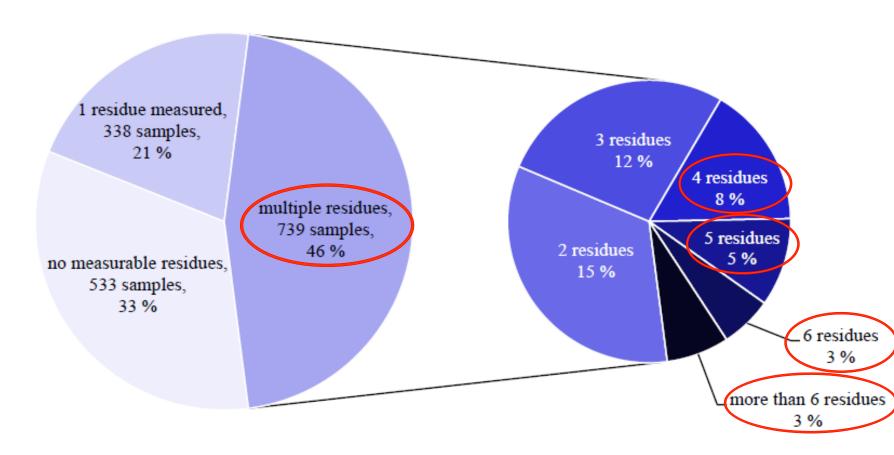


Figure 2-3: Number of detectable residues in individual apple samples

Mixture effects

<u>Additive</u> (1+1=2) and <u>synergistic</u> (1+1≥2) effects have been scientifically documented

- Acaricides <u>tau-Fluvalinate</u> and coumaphos used in beehives = increase in toxicity to bees
- Cypermethrin and <u>chlorpyrifos-ethyl</u> = much higher toxicity to earthworms even for chronic effects.
- Mixture of insecticides (<u>endosulfan</u> and <u>chlorpyrifos-ethyl</u>) killed 99% of one frog species
- Chlorothalonil and <u>atrazine</u> = synergistic impact on water fleas reproduction
- Exposure to <u>imidacloprid</u> and thiacloprid = synergistic impacts on newborn water fleas
- Addition of <u>atrazine</u> (10 µg/l) increased toxicity of terbufos to water fleas

Testing of pesticides during the authorization process is performed on single substances not on mixtures

Health impacts data gaps

Table 8: Human health issues associated with pesticides detected in analysed apples

pesticide name	Pesticide Type	Carcinogen	Mutagen	EDC	Reproduction/ development effects	Cholinesterase inhibitor	Neurotoxicant	Respiratory tract irritant	Skin irritant	Eye irritant	Other
Acetamiprid	1	N	-	-		N	N	N	Υ	Υ	
Boscalid	F	2	-	N C	?	N	N	N	N	?	
Bupirimat	F	N	-	N C	?	N	N	-	N	Υ	skin sensitiser, poss. liver, thyroid toxicant
Captan	F	Υ	N	N		N	N	-	Υ	Υ	may cause contact dermatitis
Chlorantraniliprole	1	N		N	N	?	N	-	N <	2	Possible liver toxicant
Chlorpyrifos(-ethyl)	1	N	N	2	r	Υ	Υ	N	?	?	skin sensitiser, cardiovascular and blood toxicant
Chlorpyrifos(-methyl)	I, A	N	-	N	-	Υ	Υ	N	Υ	N	as above
Chlorthalonil	F	Υ	N	N	Υ	N	N	Υ	Υ	Υ	skin sensitiser, poss. contact dermatitis
Cyhalothrin, lambda-	1	N	N	N	7	N	2	Y	?	Y	skin sensitiser; immune, thyroid toxicant if susceptible
Cypermethrin	1	?	N	?		N	N	Υ	Υ	Υ	Highly taxic
Cyprodinil	F	N	N	- (7	N	N	Υ	Υ	Υ	Skin sensitiser
Difenoconazol	F	7	-	N	7	N	N	N	Υ	Υ	Liver, heart,thyroid, kidney toxicant
Diflubenzuron	1	N	N	N	N	N	N	Y	N C	7	Reported to cause methaemoglobiaemia
Diphenylamin	GR;F;I	N	N	-	Υ	N	?	Υ	Υ	Υ	Gastrointestinal cardiovascular, kidney, liver toxicant, may cause methaemoglobiaemia and splenic congestion
Dithianon	F	?	-	. (N	N	-	N	Υ	Skin sensitiser, toxic, poss liver, kidney toxicant
Ethirimol	F	N	-	-		N	N	-	N	Υ	
Fenoxycarb	1	?	N	Y	2	2	2	Υ	Υ	Υ	Poss. liver, kidney, thyroid toxicant
Fenpyroximat	Α	N	-	-	Υ	N	N	-	Υ	Υ	Poss, sensitiser
Flonicamid	1	2	-	- (2	N	N	N	N	N	Poss. liver, kidney toxicant
Fludioxonil	F C	?	-	- 6	?	N	N	N	Υ	Υ	
Fluopyram	F	?	-	-	Υ	-	N	-	N	N	Poss. liver, thyroid, blood toxicant
Folpet	F	Y	?	-		N	N C	?	Υ	Υ	Poss, skin sensitiser
Imazalii	F C	?	N	N	Υ	N	N	Υ	N	Υ	Poss. Liver, kidney toxicant. Moderate skin sensitiser
Imidaoloprid	1	N	2	_	Υ	N C	?	N	?	?	Potential liver, kidney, thyroid, heart, spleen toxicant. Moderately toxic
Indoxacarb	1	N		2	?	N	Υ	N	Υ	Υ	Poss. kidney, liver, spleen, CNS toxicant. Prob. skin sensitiser. Moderately toxic
Iprodion	F	Υ	. 🤇	2		N	N	Υ	Υ	Υ	May cause pulmonary problems
Methoxyfenozid	1	N	N	2	N	N	N	-	2		Potential endocrine effects on thyroid and adrenal glands at high doses
Myclobutanil	F	N	-	-	?	N	N	N	N	N	Liver toxicant
Phosmet	I;A	7	N	-	Υ	Y	Υ	-	N	Υ	Highly toxic by all routes
Pirimicarb		?	-	-	N	Y	Υ	N	?		Highly toxic, may be fatal by inhalation, ingestion, skin absorbtion
Pyraclostrobin	F	N	-	. (N	N	N	Υ	?	
Pyrimethanil	F	N		2	N	N	N	-	N	2	Poss. liver, kidney, adrenals, bladder and thyroid toxicant
Spirodiclofen	A	2	-	- (?	N	2	-	N	N	Possi, adrenal gland toxicant, skin sensitiser
Tebuconazol	F	7	-	-	Υ	N	N	N	N	Υ	Targets liver/blood system
Tebufenozid	1	N	-	-	N	N	-	-	N	N	Blood, liver, kidney toxicant
Thiacloprid	1		-	-	-	N	-	N	N	N	Poss.liver, thyroid toxicant
Thiophanat-methyl	F		Υ	-	Υ	N	-	Y	2	2	Skin sensitiser, Mutagenic potential
THPI (Metabolite Captary/Captafol)	-	-	-	-	-	-	-	-	-	-	
Trifloxystrobin	F	N	-	-	Υ	N	N	-	Υ	N	Skin sensitiser

Y = Yes, known to cause a problem, N = No, known not to cause a problem, ? = possible issue status not identified, - = No data

Considerations

Apples residues below MRLs

Multiple pesticide use in conventional apples

Known hazards of individual substances

Information gaps on single substances impacts

Knowledge gaps Health and Envi impacts of cocktails

Farmers victims of the toxic burden

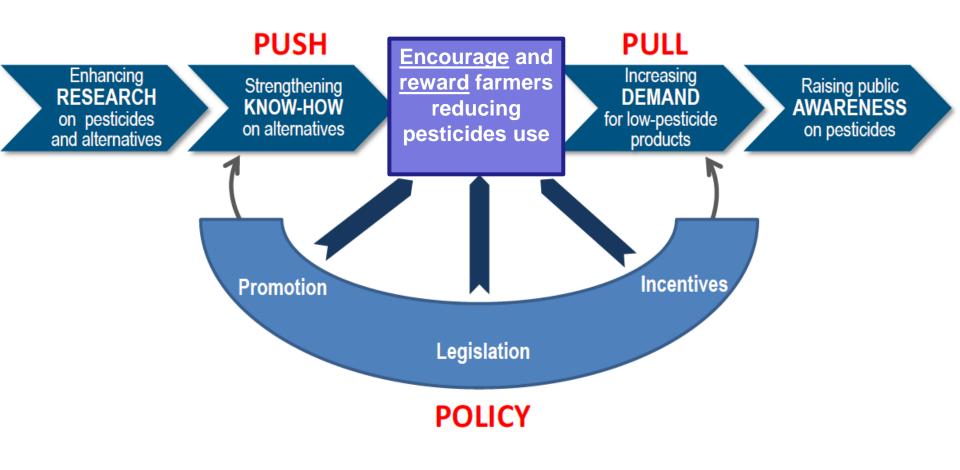
Recommendations (1)

1. Implement ecological farming principles

Preventive approaches

- Improve soil management, fertilisation, cover crops, pruning practices (improve apple trees growth less disease susceptible)
- Diversify agricultural systems
 - increasing resilience to pests and diseases
 - benefiting natural enemies (pollen/nectar predatory wasps)
- Choose disease-resistant cultivars (Smart breeding MAS)
- Monitoring pests and weather conditions for timely responses

Pests and diseases emergence


- Implement biological pest controls, pheromone disruptors
- Granulosis virus against caterpillars.
- Horsetail extract stimulating natural defences of apple trees.

Recommendations (2)

- 2. Implement the Sustainable Use of Pesticides Directive
- Concrete measures and ambitious targets as required by EU law
- 3. Strengthen pesticide risk assessment
- Resolve uncertainties on health and envi pesticides impacts
- Assess effects of pesticide cocktails
- Assess whole formulations
- Rigorous post-market monitoring (use and impacts)
- 4. Scale up R&D of non-chemical alternatives
- 5. Promote dissemination of ecological farming (EIP);
- **6. Phase out synthetic-chemical pesticides** (carcinogenic, mutagenic, toxic to reproduction, EDC, neurotoxic)

THANK YOU

Source: HELVETAS Swiss Intercooperation 2015

