

Pesticide Environmental Risk Assessment: Environment unprotected?

Angeliki Lyssimachou, PhD Environmental Scientist/Toxicologist ERA of Pesticides; EFSA, 15-16 November 2016

Pesticides

Deliberately made to be toxic to living organisms

Cellular sites in target species similar to other organisms

Pesticides are toxic to non-target species

Species population
Impact ecosystems
biodiversity

Low water solubility - Repeated use \rightarrow of

Contamination of ecosystems

Pesticides, not just for crops

Only a tiny fraction reaches the target pest

- Detected in: biota (flora and fauna), air, soil, sediments, rivers & streams, even in humans.
- About 38% of EU's total land area is treated with pesticides

EU: 300,000,000 kg/year – world's highest consumer

Eurostats 2003-2013

Anthropogenic pressures

Pesticides not the only ones

- Population expansion
- Consumption of resources
 - Marine
 - Freshwater
 - Terrestrial
- Habitat and biodiversity loss (extinction)
- Ecosystem services loss
- Invasive species

- Land exploitation
- Deforestation
- Degradation of land and habitat loss
- Livestock production
- Intensive agricultural production

- Industrialization
- Urbanization
- Freshwater exploitation
- Pollution
 - Freshwater
 - Marine
 - Air
 - Land
- Ecosystem degradation

Pesticides not the only ones

PPPR (EC) 1107/2009:

<u>Rec 8:</u>

"The purpose of this Regulation is to ensure **a high level of protection** of both human and animal health and the environment.... **The precautionary principle should be applied**."

Art 2(b,e):"*Residues/products shall not have any unacceptable effect on the environment*." (non-target species, biodiversity and ecosystems)

Annex II 3.8.: no unacceptable effects on bees, no endocrine disruptors

But are these objectives fulfilled?

Accelerating global biodiversity loss

2002 Convention on Biological Diversity: reduction targets by 2010

Study period :1970s-2010

Indicators

Declines in population trends

- Increasing pressures
- Policy and management responses are increasing but are not effective

Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW et al (2010). Global biodiversity: Indicators of recent decline. *Science*, **328**: 1164-1168

EU freshwater ecosystems unprotected

Study - Outline

- 2006-2010 EEA data
- 4000 EU sites; 91 EU rivers
- 223 Organic pollutants
- Fish, invertebrates, algae

Cmax Vs Acute Risk Threshold LC50/10 Cmean Vs Chronic Risk Threshold LC50/ 100,1000,50

Malaj E, von der Ohe PC, Grote M, Kuhne R et al. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. *PNAS* **111**: 9549-9554

EU freshwater ecosystems unprotected

Acute Toxicity

Acute Risk at 14% sites

Chronic Toxicity

Chronic Risk 42% sites

Malaj E, von der Ohe PC, Grote M, Kuhne R et al. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. *PNAS* **111**: 9549-9554

Pesticides- the underlying cause

Pesticides - Contribution

Fish: 81% insecticides

Invertebrates: 87% insecticides

Algae: 96% herbicides

Chemical risk

Agricultural land

Natural vegetation

Malaj E, von der Ohe PC, Grote M, Kuhne R et al. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. *PNAS* **111**: 9549-9554

Pesticide effects on biodiversity

Study

Cereal yield

- 8 EU countries, 9 sites:
 - 30 x 30 up to 50 x 50 km²
 - 30 arable farms/site (cereals)

Indicators:

- Wild plants, carabids & birds
- Biological control (aphids survival)
- Farmers' practises, landscape

Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, et al. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. *Basic and Applied Ecology* **11**: 97-105

Pesticide effects on biodiversity

Results

	Explanatory variable	Standardized effect	<i>p</i> -value
Wild plants	Mean field size	-0.094	0.014
•	% of land under AES	0.149	< 0.001
	Frequency of herbicide application	-0.1061	0.003
	Frequency of insecticide application	-0.105	0.013
	Applied amounts of a.i. of fungicides	-0.262	< 0.001
Carabids	% of land under AES Applied amounts of a.i. of insecticides	$0.062 \\ -0.061$	0.012 0.001
Birds	Frequency of fungicide application	-0.127	0.017
Riological control	% of land under AES	-0.144	0.002
	Applied amounts of a.i. of insecticides	0.114	0.002

Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, et al. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. *Basic and Applied Ecology* **11**: 97-105

Impact of neonicotinoids on wild bees

Study

- 62 wild bee species in UK
- Oilseed rape treated crops

- Data from 1994-2011:
 - 31,818 surveys
 - **4,056** Km²

Woodcock BA, Isaac NJB, Bullock JM, Roy DB et al. (2016). Impact of neonicotinoid use on long-term population changes in wild bees in England. *Nature Communications* **7**:12459

Bees unprotected from herbicides

Traynor KS, Pettis JS, Tarpy DR, Mullin CA, Frazier JL et al. In-hive pesticide exposome: assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. *Scientific Reports*, **6**:33207

ERA - Underestimation of harm? Insecticides

Insecticides

Regulatory Acceptable Concentration (RAC) sw/sed

Vs

Measured Insecticide Concentrations (MICs) n=23

44.7% MICs>RACs

55% of sites (n=1566)

- Limited monitoring data
- > Environmental Quality Standards (WFD)
- 90% with mixtures

Insecticide are the main drivers of biodiversity loss

Stehle S, Schulz R (2015). Pesticide Authorization in the EU – environment unprotected? *Environ Sci Pollut Res* **22**: 19632-19647

ERA – Underestimation of harm?

Fungicides

Predicted Environmental Concentrations (PECs) FOCUS scenarios

- Measured Fungicide Concentration (MFC) sw/sed
- Are PECs worst case scenarios?

No, its an underestimation

Seawater		Sediment
Step 3	15 % PECsw <mfcsw< td=""><td>67% PECsed<mfcsed< td=""></mfcsed<></td></mfcsw<>	67% PECsed <mfcsed< td=""></mfcsed<>
Step 4	28% PECsw <mfcsw< th=""><th>76% PECsed<mfcsed< th=""></mfcsed<></th></mfcsw<>	76% PECsed <mfcsed< th=""></mfcsed<>

Herbicide permitted levels unsafe

Knäbel A, Meyer K, Rapp J, Schulz R, (2014). Fungicide field concentrations exceed FOCUS surface water predictions: Urgent need of model improvement. Environ Sci Technol, **48**, 455-463.

Environment Unprotected - Recapitulate

Pressures are increasing steadily

Biodiversity loss and ecosystem degradation is increasing

- Real-time monitoring is missing
- Scenarios fail to predict worst-case and the environment remains unprotected
- Long term, chronic effects of ERA are underestimated

Final remarks

- Urgent need to reduce pesticide environmental exposure
- Europe has to adopt non toxic alternatives for agriculture
- Environmental Risk Assessment must have a truly conservative, ecological-based approach
- Abandon the concept that ecosystems always recover
- EU models should consider low dose, long term effects. Reproduction impairment, endocrine disruption and chronic effects on species should be identified
- EU should ban completely the use of dangerous and already banned pesticides (MS derogations) and prohibit exports

Thank you!